
Plagiarism
Detector
APAN 5210 Python for Data Analysis
Final Project
Team 6
Herbert Gonzalez, Kyle Ongko, Michael Popper,
Nickolas Amarta Tan & Nicole Francolini

Algorithm #1

● Rabin-Karp algorithm of comparing strings

● Makes use of hash tables using the rolling hash

technique

● The hash function maps data of an arbitrary

size to a fixed value, while the rolling hash

allows the algorithm to calculate a hash value

quickly

● The algorithm allows for the size of the n-gram

you want to compare.

● The similarity score is calculated as:

Top 5 Results Highest Similarity %

Rabin Karp Algorithm

Algorithm #2
● Utilizes the SequenceMatcher from the difflib library to compute the similarity ratio between two cells:

○ SequenceMatcher compares pairs of sequences, usually strings. It has the ability to measure the similarity between two

sequences of strings.

● Extracts code source from each cell in a DataFrame and calculates the similarity scores between different code cells within each

notebook, then storing these scores in a matrix:

○ The .ratio() method will compute the similarity ratio between two sequences selected, returning a value between 0

(no similarity) and 1 (identical similarity).
Final Output:

.ratio() Calculation:

Calculates the ratio as: ratio = 2.0*M / T ,
where M = matches , T = total number of

elements in both sequences

Algorithm #3 - Line Comparison using SequenceMatcher

- difflib.SequenceMatcher
- Comparing lines instead of characters
- Broke down the notebooks into lines, ignoring leading and trailing whitespaces for a more granular comparison
- Calculated Similarity Score between each pair of notebooks based on the ratio of matching lines

Summary of Output Top 5 Results Highest Similarity % Top 5 Results Lowest Similarity %

Algorithm #4 - rapidfuzz
Algorithm:

● Levenshtein (edit) distance: measures the similarity between two

strings or sequences, minimum edit distance at bottom right corner

● Creates matrix: doc1 x doc2 lengths of the two sequences

● Insertion, deletion, substitution: fill cells with values of the edit

distance of the substrings of the strings

● Similarity score: [0,1] score range, based on the formula

1/(1+L.distance)

● Increasing Levenshtein distance will indicate a lower similarity

score between the two sequences

Approach:

● fuzz.ratio: function takes the two notebooks and calculates the

similarity score

● for loop: to make the function calculate all possible permutations of

two documents

Top 5 - Highest Similarity Score

Bottom 5 - Lowest Similarity Score

Algorithm #5 - itertools - combinations
Explanation:

● `load_notebook` Function: Reads a Jupyter Notebook file and loads

its content as JSON.

● `extract_cells` Function: Extracts and concatenates the content of

either code or markdown cells from a notebook.

● `simple_similarity` Function: Computes a basic similarity score

between two strings.

● `compare_notebooks` Function: Compares two notebooks based on

the similarity of their code and markdown cells.

● File Comparison: The script iterates over all combinations of

notebook files and compares them, storing the results in a list.

● Results Visualization: The results are converted into a pandas

DataFrame for easy viewing.

Notes:

● Other algorithms may be more effective to detect plagiarism, this is

just an example of using itertools combinations, and the results show

a little discrepancy compared to previous algorithms.

Meta-heuristic algorithm

● The meta-heuristic algorithm

combines all 5 of the algorithms

created by our team

● Since each algorithm outputs a

similarity score out of 1 or 100, we

used an average (rescaled to 100) for

a basic meta-heuristic algorithm

Top 5 Results Highest Similarity %

Bibliography

● https://www.youtube.com/watch?v=lRzC3w2NDg0
● https://www.makeuseof.com/python-plagiarism-detector-how-to-build/
● https://docs.python.org/3/library/difflib.html
● https://github.com/maxbachmann/RapidFuzz/
● https://www.geeksforgeeks.org/simple-plagiarism-detector-in-python/amp/
● https://stackoverflow.com/questions/74301610/comparing-pandas-dataframe-column-with-list
● https://medium.com/@lostandfound2654/extracting-only-cell-codes-from-jupyter-notebooks-a-handy-python-trick-6ff2c9484

13e
● https://towardsdatascience.com/sequencematcher-in-python-6b1e6f3915fc
● https://stackoverflow.com/questions/72378391/how-to-get-maximum-similarity-value-between-lists-with-numpy
● https://stackoverflow.com/questions/61864248/comparing-each-element-in-series-to-every-other-is-there-a-better-way-than

-nes
● https://stackoverflow.com/questions/44905155/nested-loops-avoiding-self-and-reciprocal-comparisons
● https://python.plainenglish.io/a-simple-plagiarism-rate-checker-using-rabin-karp-string-matching-algorithm-in-python-e823d2

9d3f21

https://www.youtube.com/watch?v=lRzC3w2NDg0
https://www.makeuseof.com/python-plagiarism-detector-how-to-build/
https://docs.python.org/3/library/difflib.html
https://github.com/maxbachmann/RapidFuzz/
https://www.geeksforgeeks.org/simple-plagiarism-detector-in-python/amp/
https://stackoverflow.com/questions/74301610/comparing-pandas-dataframe-column-with-list
https://medium.com/@lostandfound2654/extracting-only-cell-codes-from-jupyter-notebooks-a-handy-python-trick-6ff2c948413e
https://medium.com/@lostandfound2654/extracting-only-cell-codes-from-jupyter-notebooks-a-handy-python-trick-6ff2c948413e
https://towardsdatascience.com/sequencematcher-in-python-6b1e6f3915fc
https://stackoverflow.com/questions/72378391/how-to-get-maximum-similarity-value-between-lists-with-numpy
https://stackoverflow.com/questions/61864248/comparing-each-element-in-series-to-every-other-is-there-a-better-way-than-nes
https://stackoverflow.com/questions/61864248/comparing-each-element-in-series-to-every-other-is-there-a-better-way-than-nes
https://stackoverflow.com/questions/44905155/nested-loops-avoiding-self-and-reciprocal-comparisons
https://python.plainenglish.io/a-simple-plagiarism-rate-checker-using-rabin-karp-string-matching-algorithm-in-python-e823d29d3f21
https://python.plainenglish.io/a-simple-plagiarism-rate-checker-using-rabin-karp-string-matching-algorithm-in-python-e823d29d3f21

Thank you!

